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1 Скалярное комплексное поле с потен-

циалом 4-го порядка

Пусть лагранжиан такого поля в нерелятивистской теории имеет
вид

L = iψ∗ψ̇ − |∇ψ|2

2m
− V,

где V =
λ

2
(ψψ∗)2.

После варьирования действия по ψ∗ получается уравнение

−∂i∂
iψ

2m
+ λψ2ψ∗ = iψ̇. (1)

1.1 Конденсатное решение

Найдем решение, не зависящее от координат, т.е. удовлетворяющее
уравнению

λψ2ψ∗ = iψ̇.

Решением является поле вида

ψ = ρeiωt, (2)

где ω = −λ|ρ|2.

1.2 Устойчивость конденсата скалярного поля

−∂
2
i ψ

2m
+ λψ2ψ∗ = iψ̇

Положим ψ = ρeiωt+φ, где ω = −λ|ρ|2 , a φ удовлетворяет условию
|φ| ≪ ρ :

−∂
2
i φ

2m
+ λ(ρ2e2iωtφ∗ + 2ρ2φ) = iφ̇.
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Представив φ в виде f(x, t)eiωt, получим уравнение относительно f

−∂
2
i f

2m
− ω(f + f ∗) = iḟ

Решение, согласно [1], представимо в виде f = χ(x)eiγt+η∗(x)e−iγ
∗t.

Таким образом, получаем

−∂
2
i χ

2m
eiγt − ∂2i η

∗

2m
e−iγ

∗t − ω(χeiγt + η∗e−iγ
∗t + χ∗e−iγ

∗t + ηeiγt) =

= −χγeiγt + η∗γ∗e−iγ
∗t.

Далее, если γ – не чисто мнимое, данное уравнение переходит в
систему 

− Δχ

2m
− ωχ− ωη = −χγ,

− Δη

2m
− ωη − ωχ = ηγ

(3)

После Фурье-преобразования получаем однородную систему урав-
нений 

A
k2

2m
− ωA− ωB = −Aγ,

B
k2

2m
− ωB − ωA = Bγ

(4)

Из условия равенства нулю определителя получаем дисперсионное
соотношение

(
k2

2m
− ω)2 − (γ2 + ω2) = 0. (5)

В случае γ = −γ∗, f = χ(x)eiγt,

−Δχ

2m
− ω(χ+ χ∗) = −γχ.

Разделяя мнимую и действительную части, получаем
− Δu

2m
− 2ωu = −v(iγ),

− Δv

2m
= u(iγ).
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где χ = u+iv. В силу линейности и однородности системы, несмот-
ря на вещественность u и v, решение можно искать в комплексном
виде, взяв затем действительную часть решения. Поэтому, вновь
применяя Фурье-преобразование, получим систему:

A
k2

2m
− 2ωA = −B(iγ),

B
k2

2m
= A(iγ).

(6)

Её определитель равен

d = θ2 − 2ωθ − γ2,

и, приравнивая его к нулю, мы снова приходим к выражению 5, от-
куда следует, что оба случая можно рассматривать одновременно.
Перепишем выражение 5 в виде

γ2 = (
k2

2m
− ω)2 − ω2 (7)

Периодичность требует, чтобы k было вещественным, откуда сле-
дует, что γ2 может принимать отрицательные значения при ω > 0,
откуда будет следовать неустойчивость конденсата. При ω ≤ 0 γ2

отрицательных значений принимать не может, откуда будет следо-
вать устойчивость конденсата.

Вспоминая, что ω = −λ|ρ|2, получим, что при λ < 0 конден-
сат рассматриваемого скалярного поля неустойчив, а при λ ≥ 0 –
устойчив.

1.3 Сферически симметричные решения

Предложим еще один способ отыскания конденсатного решения
поля: будем искать решения уравнения 1 вида f(r)eiωt, где r =√
x2 + y2 + z2. После подстановки имеем уравнение относительно

f :
f ′′

2m
= −d− 1

2mr
f ′ + λf 3 + ωf,
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которое можно записать в виде

f ′′

2m
= −d− 1

2mr
f ′ − ∂

∂f
(−λ

4
f 4 − ω

2
f 2).

Данное уравнение можно интерпретировать как уравнение движе-

ния материальной точки в потенциале U(f) = −λ
4
f 4 − ω

2
f 2, под f

понимая координату точки, а под r – время. Тогда конденсатные
решения легко находятся как точки покоя в данном потенциале.

Заметим, что при λ < 0 и ω > 0 потенциал имеет локальный
максимум в нуле, а на бесконечности возрастает. Таким образом,
уравнение в данном случае допускает решение в виде Q-шаров, с
чем может быть связана неустойчивость конденсата.

1.4 Джинсовская длина волны скалярного кон-

денсата

Вернемся еще раз к выражению 5 и перепишем его в виде:

γ2 = (
k2

2m
− ω)2 − ω2

и рассмотрим зависимость γ2 от k2 при ω > 0, т.е. в случае неустой-
чивости конденсата.

Минимально возможное k, при котором еще наблюдается устой-
чивость конденсата (т.е. которому соответствует положительное
γ2) и будет соответствовать джинсовской длине волны. Из рисун-

ка видно, что конденсат устойчив при
k2

2m
≥ 2ω. Таким образом,

kJ =
2π

λJ
=

√
4mω, и, вспоминая, что ω = |λ|ρ2 при λ < 0, для

джинсовской длины волны окончательно получаем:

λJ =
π

ρ
√
m|λ|

.
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Рис. 1: Вид зависимости γ2(k)

2 Релятивистское скалярное поле

Рассмотрим поле с лагранжианом:

L = ∂µΦ∂
µΦ−m2ΦΦ∗ − λ

2
(ΦΦ∗)2

и, соответственно, уравнением:

∂µ∂
µΦ +m2Φ + λΦ2Φ∗ = 0.

Нерелятивистское уравнение 1 получается заменойΦ =
1√
2m

ψe−imt

в предположении достаточно медленной зависимости ψ от времени
в виде eiωt, так что ω ≪ m:

−∂i∂
iψ

2m
+

λ

(2m)2
ψ2ψ∗ = iψ̇.

Таким образом, λψ из уравнения 1 равно
λ

(2m)2
.
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Конденсатное решение в релятивистской теории будет выгля-
деть следующим образом:

Φ0 = ρeiωt,

где ω2 = m2 + λρ2.
Отсюда видно, что при λρ2 < −m2 конденсат заведомо неустой-

чив. Так как этого результата в нерялитивистской теории обнару-
жено не было, можно сделать вывод, что релятивистский конден-
сат будет переходить в нерелятивистский только при |λρ2| ≪ m2.

Для проверки на неустойчивость добавим к конденсатному ре-
шению малые возмущения φ, считая, что |φ| ≪ ρ :

∂µ∂
µΦ0 + ∂µ∂

µφ+m2Φ0 +m2φ+ λ(Φ0 + φ)2(Φ∗
0 + φ∗) = 0.

После замены φ = f(x, t)eiωt получим:

f̈ + 2iωḟ − f ′′ + λρ2(f + f ∗) = 0.

Найдем моды, отвечающие непосредственно за неустойчивость.
Для этого сделаем замену f = χ(x)eγt, где γ – вещественное:

−χ′′ + γ2χ+ 2iωγχ+ λρ2(χ+ χ∗) = 0.

Разделяя действительную и мнимую части и решая аналагично
предыдущему разделу, приходим к дисперсионному соотношению
для k и γ:

k2 = γ2 − λρ2 ±
√
(λρ2)2 − 4ω2γ2.

При λ < 0 возможно существование одновременно положитель-
ных k2 и γ2, а при λ > 0 – невозможно. Этот результат совпадает с
результатом для нерелятивистского поля. Рассмотрим зависимость
k2 от γ2 при λ < 0. Её график представлен на рисунке. При до-
статочно малых λρ2 по сравнению с m максимальное значение k
будет при γ = 0. Таким образом,

λJ =
2π√
2|λ|ρ2

,

7



Рис. 2: Вид зависимости k2(γ2), m = 1, λρ2 = −0.4

а в терминах констант нерелятивистского поля получим:

λJ =
π√

m|λψ|ρ2ψ
,

что совпадает с джинсовской длиной волны, полученной для нере-
лятивистского конденсата ранее.
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3 Векторное комплексное поле с потен-

циалом 4-го порядка

Пусть лагранжиан поля имеет вид

L = iψ∗
i ψ̇

i − |∇ψi|2

2m
− V,

где V =
α

2
(ψiψ

∗i)2 +
β

2
(ψ∗

iψ
∗i)(ψjψ

j), i, j = 1, 2, 3.

После варьирования по ψ∗
k получаем уравнения векторного по-

ля

− Δψk
2m

+ α(ψjψ
j∗)ψk + β(ψjψ

j)ψ∗
k = iψ̇k,

k = 1, 2, 3.
(8)

3.1 Конденсатное решение

Оно должно удовлетворять уравнениям

α(ψjψ
j∗)ψk + β(ψjψ

j)ψ∗
k = iψ̇k.

Решение будем искать в виде ψ0k = ρke
iφk, где ρk(t) и φk(t) – дей-

ствительные функции. После подстановки данного выражения по-
лучим

αρk(ρ
2
1+ρ

2
2+ρ

2
3)+βρk(ρ

2
1e

2i(φ1−φk)+ρ22e
2i(φ2φk)+ρ23e

2i(φ3φk)) = iρ̇k−ρφ̇k,
(9)

причем по j здесь и в дальнейшем будет предполагаться суммиро-
вание квадратов индексированных выражений.

Потребуем ρi = const. Отсюда следует, что φ1 = φ2 = φ3,
причем φ̇k = −(α + β)(ρ21 + ρ22 + ρ23) = ω.

Конденсатное решение имеет, таким образом, вид

ψ0k = ρke
i(ωt+φ0).
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3.2 Устойчивость конденсата векторного поля

Для проверки полученного решения на устойчивость добавим к
нему малые возмущения φk, такие, что |φk|2 ≪ ρ21 + ρ22 + ρ23 :

ψk = ψ0k + φk,

и подставим данные выражения в уравнения 8

−Δφk
2m

+α(ψ0k+φk)(ψ0j+φj)(ψ
j∗
0 +φj∗)+β(ψ∗

0k+φ
∗
k)(ψ0j+φj)(ψ

j
0+φ

j) = i(ψ̇0k+φ̇k).

Учитывая, что ψ0i удовлетворяют уравнениям 8, и пренебрегая сла-
гаемыми высших по модулю φk порядков, получим

−Δφk
2m

+αρk(ρjφ
j∗e2iωt+ρjφ

j)+αρ2φk+2βρkρjφ
j+βρ2φ∗

ke
2iωt = iφ̇k,

где ρ2 = ρ21 + ρ22 + ρ23.
Подставим φk = ρkfk(x, t)e

iωt, после чего получим

−Δfk
2m

+(α+2β)(ρ21f1+ρ
2
2f2+ρ

2
3f3)+α(ρ

2
1f

∗
1+ρ

2
2f

∗
2+ρ

2
3f

∗
3 )+βρ

2(f ∗k−fk) = iḟk.

(10)
Решение, согласно [1], представимо в виде

fk = χk(x)e
iγt + η∗k(x)e

−iγ∗t.

Заметим, что если γ может принимать комплексные значения, то
решение неустойчиво. Для устойчивости необходимо, чтобы γ было
вещественным.

После подстановки имеем
− Δχk

2m
+ (α + 2β)(ρ21χ1 + ρ22χ2 + ρ23χ3) + α(ρ21η1 + ρ22η2 + ρ23η3) + βρ2(ηk − χk) = −γχk,

− Δηk
2m

+ (α + 2β)(ρ21η1 + ρ22η2 + ρ23η3) + α(ρ21χ1 + ρ22χ2 + ρ23χ3) + βρ2(χk − ηk) = γηk.

(11)

После преобразования Фурье в случае двумерного поля получим
однородную систему со следующей матрицей:
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
θ + (α+ 2β)ρ21 − βρ2 + γ αρ21 + βρ2 (α+ 2β)ρ22 αρ22

αρ21 + βρ2 θ + (α+ 2β)ρ21 − βρ2 − γ αρ22 (α+ 2β)ρ22
(α+ 2β)ρ21 αρ21 θ + (α+ 2β)ρ22 − βρ2 + γ αρ22 + βρ2

αρ21 (α+ 2β)ρ21 αρ22 + βρ2 θ + (α+ 2β)ρ21 − βρ22 − γ

 ,

где θ =
k2

2m
(k - волновое число).

К первой строке прибавим вторую и вычтем третью и четвер-
тую.

θ + γ θ − γ −θ − γ −θ + γ
αρ21 + βρ2 θ + (α+ 2β)ρ21 − βρ2 − γ αρ22 (α+ 2β)ρ22
(α+ 2β)ρ21 αρ21 θ + (α+ 2β)ρ22 − βρ2 + γ αρ22 + βρ2

αρ21 (α+ 2β)ρ21 αρ22 + βρ2 θ + (α+ 2β)ρ21 − βρ22 − γ

 ,

Прибавим к третьему столбцу первый (и пятый, в трехмерном
случае), а к четвертому второй (и шестой, в трехмерном случае)

θ + γ θ − γ 0 0
αρ21 + βρ2 θ + (α+ 2β)ρ21 − βρ2 − γ (α+ β)ρ2 θ + (α+ β)ρ2 − γ
(α+ 2β)ρ21 αρ21 θ + (α+ β)ρ2 + γ (α+ β)ρ2

αρ21 (α+ 2β)ρ21 (α+ β)ρ2 θ + (α+ β)ρ2 − γ

 .

Затем вычтем из второй строки четвертую (а в трехмерном случае
ещё из третьей пятую и из четвертой шестую). Данные преобразо-
вания приведут к матрице, определитель которой равен произве-
дению двух (трех) определителей второго порядка.

Запишем условие существования нетривиального решения си-
стемы в случае трехмерного поля:

[θ2 − 2βρ2θ − γ2]2 × [θ2 + 2(α + β)ρ2θ − γ2] = 0 (12)

Это условие определяет два возможных дисперсионных соотноше-
ния:

γ2 = [
k2

2m
− βρ2]2 − β2ρ4, (13)

γ2 = [
k2

2m
+ (α + β)ρ2]2 − (α + β)2ρ4. (14)

Отсюда видно, что при β > 0 или (α + β) < 0 появляется
возможность для γ быть комплексной величиной, что означает
неустойчивость конденсата при данных параметрах.

В случае β ≤ 0, (α+ β) ≥ 0 конденсат рассматриваемого поля
является устойчивым.
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Рис. 3: Вид зависимостей γ2(k2), красная отвечает соотношению
13, синяя – соотношению 14,
m = 1, ρ = 1, α = −0.5, β = 1.3

3.3 Джинсовская длина волны векторного кон-

денсата

Рассмотрим, аналогично разделу 1.4, теперь уже две зависимости
γ2(k):

γ2 = θ(θ − 2βρ2),

γ2 = θ(θ + 2(α + β)ρ2), θ =
k2

2m
.

Аналагично разделу 1.4 находится выражение для джинсовской
длины волны векторного конденсата:

λJ =
π

ρ
√
mβ

в случае β > 0, α + β > 0,

λJ =
π

ρ
√
−m(α + β)

в случае β < 0, α + β < 0,

λJ = min(
π

ρ
√
mβ

,
π

ρ
√

−m(α + β)
) в случае β > 0, α + β < 0.
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